Space Junk

One of my AvantGo channels I download to my Palm to read on MARTA is space.com. I’m not sure how they make money, but they have a lot of good space-related articles. Today they had one on space junk, all the pieces of old rocket motors, dead satellites, loose screws, and other pieces of debris in orbit around the earth travelling thousands of miles per hour. Even a paint chip travelling at 10,000 miles per hour can knock a hole in a satellite or spaceman. So it is a significant problem and there are all kinds of efforts to minimize any cast-off material or debris. Also there is a project to track every known piece of junk to make sure critical satellites, the space shuttle, space station, etc. can move out of the way if they are in danger of being hit.

This article is about a series of old Russian satellites that had nuclear reactors on board for elecricity. The Russians didn’t want the satellites to fall to earth with reactor cores in them so they included a booster rocket that would, after the satellite was no longer needed, launch the reactor core into a much higher earth orbit that would take thousands of years to degrade. By the time the core would re-enter the earth’s atmosphere so many half-lives would have passed that it would no longer be dangerous. So that was a neat idea right there.

But then it seems that after the cores were ejected, the leftover part sprung a leak in its liquid coolant. A stream of drops came out of the satellite. Each drop is a piece of space junk and some of the “drops” are a couple of inches in diameter. So now there are 10,000 drops of Sodium-Potassium coolant in orbit waiting to hit anything in space at extremely high speed. Oh, and each drop is radioactive.

Then they said that because these satellites were all at roughly the same orbit, that even the non-leaking ones are now subject to be hit by one of these droplets, causing further leaks and even more space junk. In fact they said people are doing research to see if there is already a “critical mass” of space junk that will just keep colliding into each other and producing even more pieces of debris that will cause more collisions and so forth.

Fifty years of exploring space and we may have already ruined it.

http://www.space.com/news/mystery_monday_040329.html


Old Soviet nuclear powered satellites leaked a trail of menacing radioactive droplets that have become a debris threat to other spacecraft.

Tiny spheres of liquid sodium-potassium (NaK) reactor coolant dripped from the former Soviet Union’s radar ocean reconnaissance satellites, known as RORSATs. This class of satellite — no longer launched — carried a nuclear reactor to power a large radar dish that enabled day/night snooping of Earth’s oceans.

After a RORSATs tour-of-duty was over, the reactor’s fuel core was shot high above Earth into a “disposal orbit”. Once at that altitude the power supply unit would take several hundred years before it reentered the Earth’s atmosphere.

Images

This Soviet Union placed a series of radar-equipped ocean reconnaissance satellites, known as RORSATs in the west in low Earth orbit beginning in 1967. Employing powerful radars and working in pairs, they located and targeted U.S. ships for destruction by Soviet naval forces. Nuclear-powered RORSATs launched in the 1970s occasionally malfunctioned, including one that crashed and spread radioactive debris across northern Canada in 1978. Image credit: Smithsonian/DIA

NASA’s Long Duration Exposure Facility (LDEF) was deployed in orbit in 1984 by the Shuttle Challenger. After floating through space for well over 5 years, the bus-sized spacecraft – outfitted with dozens of experiment trays — was returned to Earth by shuttle Columbia in 1990. Once inspected, sodium potassium coolant from Russian reactors was identified as impacting LDEF. Credit: NASA

Ground-based radar first caught glimpse of an abnormally high concentration of objects drifting through space. The objects were later identified as droplets of reactor coolant that eked from leaking Russian space reactors. Shown here are Haystack and HAX radars located in Tyngsboro, Massachusetts. These radars collect hundreds of hours of orbital debris data each per year. They are NASA’s primary source of data on centimeter-size debris. Credit: NASA/JSC Orbital Debris Office

Earth is encircled by space debris, big and small bits of human-made flotsam. This computer generated image depicts orbital debris currently being tracked around the Earth. Menacing space litter includes over 100,000 tiny droplets of reactor coolant that escaped from Russian-built military spacecraft. Credit: NASA/JSC Orbital Debris Office

More Stories

NASA Asks Pentagon to Examine Space Station for Damage

Space Debris Experts Debate Possibility of Columbia Impact

‘No Littering’ Plea Extended to Space Junkyard

Radar Satellites Began With the Space Age

However, in ejecting the core from the main body of a RORSAT, a plumbing problem plagued the satellite design. Faulty seals permitted the NaK coolant to leak, leaving thouands upon thousands of droplets to spill freely in to space.

Hazard to spacecraft

RORSATs were orbited by the Soviets starting in 1967 and stopped in 1988.

There is evidence from ground-based radar measurements that 16 of a total of 31 RORSAT nuclear reactors orbited lost coolant following core ejection into disposal orbits.

Paula Krisko, a space debris specialist working for Lockheed Martin at NASA’s Johnson Space Center (JSC) in Houston, Texas, noted in a recent newsletter dedicated to orbital debris research that the NaK droplets have been observed over the last decade.

Not only have the spheres come under scrutiny by several NASA radars, Krisko explained, they were also found to have dinged the Long Duration Exposure Facility, better known in NASA lingo as LDEF. This school bus-sized spacecraft floated through space for well over 5 years before being plucked from orbit and returned to Earth by shuttle Columbia in 1990.

Krisko explained that a study of the NaK coolant droplets circling Earth, floating about in varying sizes, is estimated to be 110,000 to over 115,000 in number.

“This population represents an orbital debris hazard to spacecraft in low Earth orbit,” she stated.

Radar studies

Credited with first flagging the Soviet leaking reactor problem was Don Kessler. He has over 40 years of experience in the scientific study of human-made space trash, a large chunk of that time spent at the NASA JSC delving into the problem of space debris.

Kessler is now an orbital debris and meteoroid consultant in Asheville, North Carolina.

There has been a significant change in the RORSAT story since Kessler and his colleagues first reported the problem in 1995. “It is now accepted by all, even by the

Russians, as being correct and is now part of all orbital debris models,” he said.

NASA’s main source in spotting the drifting droplets was the Haystack radar. That facility is operated by Massachusetts Institute of Technology’s (MIT) Lincoln Laboratory and has been collecting orbital-debris data for NASA since 1990 under an agreement with the U.S. Air Force.

Kessler led the effort to discover the cause of an abnormally high concentration of objects that was detected by the Haystack radar. These small objects were zipping about the Earth between roughly 530 miles (850 kilometer) and 620 miles (1,000 kilometer) altitude.

Something strange going on

“Our first clue that something strange was going on,” Kessler said, was the high concentration of objects near 600 miles (900 kilometers) above Earth. That intensity of objects could not be explained by an explosion, which would have dispersed the debris over a larger altitude range, he added.

“The concentration was so high that, whatever the source, it represented the most significant impact hazard for spacecraft operating at those altitudes… and still does today,” Kessler said.

Early work involved techniques using the Haystack radar to sample the environment by simply counting objects as they passed through the radar beam. The advantage of this was that researchers were able to statistically sample the environment of much smaller objects, Kessler explained. Altitude and radial velocity of the droplets could be accurately measured. But only rough measurements of motion direction and size of the objects could be ascertained, he said.

Stare and chase

The final proof came when NASA asked MIT to develop a “stare-and-chase” procedure where they could track some of the larger objects long enough to develop orbits.

“We used all this information, plus other sources of information, to determine the source,” Kessler said. That source of spheres made of NaK coolant was found to come from the seeping RORSATs, he said.

Kessler told SPACE.com that follow-on NASA work has pegged the total mass of leaked NaK as over 360 pounds (165 kilograms) — greater than he had orginally estimated.

A report on the RORSAT leakage in 1997, led by Alessandro Rossi, a researcher at the Centro Nazionale Universitario di Calcolo Elettronico (Electronic National University Center for Calculation) in Pisa, Italy, pointed out another issue.

Rossi stated that, although the NaK coolant leakage may have been confined to a specific class of satellite no longer launched, “the probability that a debris impact might puncture the radiator of one of the RORSATs still in graveyard orbit, inducing a new leak from the secondary cooling circuit, is far from negligible.”

Well-defined and publicized

“The issue has been well-defined and publicized,” said Nicholas Johnson, Program Manager and Chief Scientist at the NASA JSC’s Orbital Debris Program Office.

There is a large population of NaK droplets primarily around 560 miles (900 kilometers) altitude above Earth, Johnson explained. Some of the largest of these are in the roughly 2 inches to 3 inches (5 to 7 centimeters) diameter category. They have been cataloged by the U.S. Space Surveillance Network and are routinely tracked, he said.

The vast majority of the droplets are smaller, down to less than an inch in diameter, Johnson said. “They are not decaying rapidly, although some very small particles have reached lower Earth orbits.”

Johnson told SPACE.com that “they pose potential mechanical damage to other spacecraft, just as more conventional debris of the same size.”

Radioactive droplets?

There is one added element to the RORSAT reactor coolant saga. Are those droplets radioactive?

Any object, large or small — a paint fleck or a tiny radioactive sphere — whizzing about Earth at high speed is troublesome to both piloted and automated spacecraft. Furthermore, eventually those NaK spheres will nose-dive into the upper atmosphere.

There is no doubt that the NaK coolant was radioactive when a RORSAT was running, said Gerald Kulcinski, associate dean for research in the College of Engineering and a professor of nuclear engineering at the University of Wisconsin at Madison. In the process, both Sodium-24 and another isotope, Argon-39 would have been created, he said.

While the radioactive Sodium-24 is short-lived, any Argon-39 released would have a half-life of 270 years, Kulcinski noted.

That being said, however, just how much of that Argon-39 radioactive isotope is encapsulated within a space-frozen NaK coolant droplet is not immediately clear, Kulcinski added. Specific engineering details of how the RORSAT reactor was designed and functioned would be required. Yet another unknown factor is what impurities could have been resident within the NaK coolant, he said.

Runaway threshold

The NaK droplets represent only the “short-term” issue, Kessler said. He underscored another concern — terming it a “runaway threshold”. That is, collisions in space would increasingly produce large quantities of smaller debris over the next 50 years or so.

“Since we began looking, we have measured debris not only from sources like the NaK, but from solid rocket motors that eject large amounts of centimeter-to-micron-size objects, paint flecks from painted spacecraft surfaces, copper needles from U.S. Air Force communication tests, and more fragments than expected from explosions in space,” Kessler said.

“In the long-term, debris resulting from collisions is still the major problem, and will be the most expensive to control,” Kessler said. “We are on the threshold, if we have not already exceeded it, of reaching a “critical density” of objects in low Earth orbit, where collisional fragmentation will cause the debris environment to slowly grow even if all other sources are eliminated.”

2 thoughts on “Space Junk”

  1. If I threw a baseball 73 mph at your head and your head was only 3 feet away, that would sound like a really dangerous thing to do, and you would tell mom to get me in lots of trouble. If I then explained to mom that we were driving 70 mph down the road, and I tossed the ball 3 mph from the back seat to the front seat (so the ball was going 73 mph relative to the ground) I wouldn’t get in as much trouble.

    The drops are not going to collide with other objects circling the earth at 10,000 mph.

    Then you have to take into account the vastness of space…. which might be like me throwing a rock at you in a gymnasium with my eyes closed. Chances are you wouldn’t get hit.

    We need to put mini black holes in orbit around the earth to suck all this stuff up…. or… maybe we’ll end up with rings like Saturn. That would be neat.

  2. The baseball thing doesn’t work. Not all of these objects are in exactly the same orbit so they might both be travelling 10,000 mph and hit each other at 90 degrees. Also a lot of the orbits are elliptical so they pass through many circular orbits vertically.

    You’re right about the vastness. Orbits go thousands of miles out into space (I think geosynchronous is 23,000 which would be the highest most would want to go). However the speed counts because many of the lower orbits go around the earth in 90 minutes so they are covering a lot of that vastness very, very quickly making it seem a lot smaller.

Leave a Reply to Jeb Cancel reply

Your email address will not be published. Required fields are marked *